En el mundo actual, Ácido nucleico es un tema relevante que impacta a personas de todas las edades, géneros y procedencias. La importancia de abordar este tema radica en su influencia en distintos aspectos de la vida cotidiana, desde la salud física y emocional, hasta el desarrollo social y económico. A lo largo de la historia, Ácido nucleico ha sido objeto de numerosas investigaciones y debates, lo que ha dado lugar a una amplia gama de perspectivas y enfoques sobre cómo abordarlo. En este artículo, exploraremos diferentes aspectos de Ácido nucleico, desde sus orígenes hasta sus implicaciones en la actualidad, con el fin de proporcionar una visión integral y actualizada sobre este tema.
Los ácidos nucleicos son grandes polímeros formados por la repetición de nucleótidos, unidos mediante enlaces fosfodiéster. Se forman largas cadenas; algunas moléculas de ácidos nucleicos llegan a alcanzar tamaños gigantescos, de millones de nucleótidos encadenados. Existen dos tipos básicos, el ADN y el ARN.
El descubrimiento de los ácidos nucleicos se debe a Johan Friedrich Miescher que, en el año 1868, aisló de los núcleos de las células una sustancia ácida a la que llamó nucleína, nombre que posteriormente se cambió a ácido nucleico. Posteriormente, en 1953, James Watson y Francis Crick descubrieron la estructura del ADN a partir de la Fotografía 51, realizada por Rosalind Franklin empleando la técnica de difracción de rayos X.
Los ácidos nucleicos son biomoléculas, de la misma forma que los glúcidos, los lípidos y las proteínas, y por ello, todos los seres vivos los poseen. Los ácidos nucleicos son las moléculas que contienen la información genética, información que dirige y controla la síntesis de proteínas de un organismo. Los ácidos nucleicos proporcionan la información que determina la especificidad y características biológicas de las proteínas. Y las proteínas son polímeros formados por monómeros llamados aminoácidos y unidos mediante enlaces peptídicos, que determinan la forma y estructura de las células y dirigen casi todos los procesos vitales. Ácido nucleico" es utilizado para describir unas moléculas específicas y grandes en la célula. En realidad están hechas de cadenas de unidades de polímeros que se repiten; los dos ácidos nucleicos más famosos, de los que usted habrá oído hablar.
Existen dos tipos de ácidos nucleicos: ADN (ácido desoxirribonucleico) y ARN (ácido ribonucleico), que se diferencian:
Las Bases nitrogenadas son las que contienen la información genética, estas presentan una estructura cíclica que contiene carbono, nitrógeno, hidrógeno y oxígeno. Se dividen en dos tipos:
La presencia de los átomos de nitrógeno le da un carácter básico a estos compuestos. Son aromáticas y por lo tanto son planas, también son insolubles en agua y pueden establecer interacciones hidrofóbicas entre ellas; estas interacciones sirven para estabilizar la estructura tridimensional de los ácidos nucleicos. La existencia de distintos radicales hace que puedan aparecer varias bases nitrogenadas, las cuales son:
Un nucleósido es una unidad conformada por una pentosa (ribosa o desoxirribosa) unida a una base nitrogenada. La unión se realiza mediante un enlace N-glucosídico, con configuración beta (β), el cual es una variante del enlace glucosídico, que se forma cuando un hemicetal intramolecular reacciona con una amina, en lugar de hacerlo con un alcohol, liberándose una molécula de agua. En los nucleósidos se lleva a cabo entre el carbono 1 (carbonilo) del azúcar y uno de los átomos de nitrógeno de la base nitrogenada, si esta es una pirimidina se une a la posición 1' y si es una purina en la posición 9'.
Los planos de la base y el azúcar son perpendiculares entre sí pero las bases pueden presentar dos conformaciones diferentes:
Existen dos tipos de nucleósidos:
Para nombrar estos compuestos se debe tomar en cuenta qué base nitrogenada es y a qué azúcar está unida; cuando es una base púrica se añade al nombre de esta la terminación “-osina” y la terminación “-idina” si es una pirimidina y se antepone el prefijo “desoxi-” en el caso de los desoxirribonucleósidos.
Los nucleótidos son las unidades básicas de los ácidos nucleicos y químicamente son los ésteres fosfóricos de los nucleósidos, es decir que son el resultado de la unión entre una ribosa, una base nitrogenada y un ácido fosfórico. La unión entre el nucleósido y el ácido fosfórico se lleva a cabo mediante un enlace éster que puede producirse en cualquiera de los grupos hidroxilo libres de la pentosa, pero como regla general tiene lugar en el grupo alcohol del carbono 5'. Los nucleótidos pueden contener de uno a tres grupos fosfato, unidos uno tras otro, por ejemplo el monofosfato que solo contienen un grupo fosfato, el difosfato con dos, trifosfato con tres. La presencia del grupo fosfato que a pH 7 se encuentra ionizado, le confiere a la molécula un carácter marcadamente ácido.
Al igual que los nucleósidos, los nucleótidos también se dividen en dos grupos dependiendo de la ribosa que contenga:
Para nombrar estos compuestos existen diferentes maneras, la forma más utilizada y la más sencilla es en donde cada nucleótido se identifica con tres letras mayúsculas. La primera de ellas corresponde a la base nitrogenada que contenga el nucleótido, la segunda letra indica si es un mono-, di- o trifosfato y la tercera es la inicial del grupo fosfato, la cual es una P y por último, en el caso de los desoxirribonucleótidos se antepone una d minúscula antes de las tres letras. Otra forma de nombrarlos consiste en poner la palabra ácido al inicio y en seguida se coloca el nombre de la base nitrogenada con la terminación -ílico, pero este sistema de nomenclatura puede ser un poco ambiguo ya que no se puede saber la cantidad de grupos fosfatos que contiene el nucleótido. También se suelen nombrar como los fosfatos de los correspondientes nucleósidos.
Por ejemplo: Se quiere nombrar el nucleótido compuesto de una adenina con un grupo fosfato y una ribosa.
Además de formar la estructura de los ácidos nucleicos los nucleótidos tienen otras funciones relevantes:
El ADN es bicatenario, está constituido por dos cadenas polinucleotídicas unidas entre sí en toda su longitud. Esta doble cadena puede disponerse en forma lineal (ADN del núcleo de las células eucarióticas) o en forma circular (ADN de las células procarióticas, así como de las mitocondrias y cloroplastos eucarióticos). La molécula de ADN porta la información necesaria para el desarrollo de las características biológicas de un individuo y contiene los mensajes e instrucciones para que las células realicen sus funciones. Dependiendo de la composición del ADN (refiriéndose a composición como la secuencia particular de bases), puede desnaturalizarse o romperse los puentes de hidrógenos entre bases pasando a ADN de cadena simple o ADNsc abreviadamente.
Excepcionalmente, el ADN de algunos virus es monocatenario.
El ADN es un polímero relativamente estable. Las reacciones espontáneas, como la desanimación de ciertas bases, la hidrólisis de los enlaces base-azúcar N-glucosídicos, la formación de dímeros de pirimidina inducida por radiación, ocurren lentamente, pero son importantes debido a que la célula tiene una baja tolerancia a los cambios en el material genético.
Se puede determinar la secuencia del ADN y se pueden sintetizar polímeros de ADN por un reglamento que incorpora métodos químicos y enzimáticos.
El ARN difiere del ADN en que la pentosa de los nucleótidos constituyentes es ribosa en lugar de desoxirribosa, y en que, en lugar de las cuatro bases A, G, C, T, aparece A, G, C, U (es decir, uracilo en lugar de timina). Las cadenas de ARN son más cortas que las de ADN, aunque dicha característica es debido a consideraciones de carácter biológico, ya que no existe limitación química para formar cadenas de ARN tan largas como de ADN, al ser el enlace fosfodiéster químicamente idéntico. El ARN está constituido casi siempre por una única cadena (es monocatenario), aunque en ciertas situaciones, como en los ARNt y ARNr puede formar estructuras plegadas complejas y estables.
Mientras que el ADN contiene la información, el ARN expresa dicha información, pasando de una secuencia lineal de nucleótidos, a una secuencia lineal de aminoácidos en una proteína. Para expresar dicha información, se necesitan varias etapas y, en consecuencia existen varios tipos de ARN:
El ADN y el ARN pueden desnaturalizarse.
La elevación de la temperatura y los valores extremos de pH producen la desnaturalización del ADN de doble hélice (generalmente sucede a la temperatura de su punto de fusión). Esto provoca el desenrrollamiento de la doble hélice, debido a las desestabilización de los puentes de hidrógeno entre los pares de bases, no hay ruptura de enlaces covalentes.
La renaturalización es un proceso rápido que consiste en un solo paso, para esto deberá existir un segmento de doble hélice de una docena o más residuos que mantengan unidas las dos hebras. Cuando el pH y la temperatura regresan a valores normales, lo que estaba desenrrollado se vuelve a enrollar espontáneamente. Pero si las dos hebras están totalmente separadas, se lleva a cabo en dos pasos. En el primero, el proceso es lento, las hebras de ADN se reconocen al azar y forman un pequeño fragmento de doble hélice. En el segundo, el proceso es más rápido y las bases que se encuentran no apareadas, se aparean progresivamente para formar la doble hélice.
Efecto hipocrómico.
Cuando se dan interacciones próximas del apilamiento de las bases de los ácidos nucleicos, estos producen una disminución de la absorción de la luz UV, en relación con la absorción de una disolución de nucleótidos libres de la misma concentración; la adsorción disminuye cuando se forma la doble cadena. A este fenómeno se le conoce como efecto hipocrómico.
Cuando se desnaturaliza un ácido nucleico se produce un efecto contrario, hay un incremento de adsorción, se le llama hipercrómico.
Las moléculas de ADN de un virus o de una bacteria en disolución se desnaturalizan en su punto de fusión (la tm; temperatura de melting o temperatura de fusión del ADN es la temperatura en la cual el 50% del ADN tiene sus hebras separadas). Cuanto mayor es el contenido de bases de citosina y guanina (C≡G), mayor el punto de fusión, ya que estas dos bases se unen por tres puentes de hidrógeno, a diferencia de la adenina y la timina que están unidas por dos.
Existen, aparte de los naturales, algunos ácidos nucleicos no presentes en la naturaleza (análogos de ácidos nucleicos), sintetizados en el laboratorio.