Etileno (biología)

Apariencia mover a la barra lateral ocultar

Descubrimiento de la biología del etileno

El etileno se ha utilizado en la práctica desde los antiguos egipcios, que hacían muescas a los higos para estimular la maduración (en cualquier órgano de una planta, las heridas estimulan la producción del etileno por parte de los tejidos). En la antigua China se quemaba incienso en cuartos cerrados para acelerar la maduración de las peras. En 1864, se descubrió que los escapes del gas de las lámparas de carbón que iluminaban las calles provocaban en las plantas adyacentes la disminución del crecimiento, el torcimiento o epinastia y espesamiento anormal de los vástagos. En 1901, el ruso Dimitry Neljubow demostró que el componente activo que producía tales efectos era el etileno.​ En 1917, Doubt descubrió que el etileno estimulaba la abscisión.​ No fue hasta 1934 que R. Game divulgó que algunos frutos en maduración sintetizan el etileno.​ En 1935, Crocker propuso que el etileno era la hormona de la planta responsable de la maduración de los frutos, así como de la inhibición de tejidos vegetativos que provocaban la caída de las hojas.

Producción biológica del etileno

Biosíntesis del etileno

Se ha demostrado que el etileno se produce en todos los órganos de las plantas, incluyendo las hojas, los vástagos, las raíces, las flores, los frutos y los tubérculos.

La producción del etileno está regulada por una variedad de factores de desarrollo y ambientales. Durante la vida de la planta, la producción del etileno se induce durante ciertas etapas del crecimiento tales como germinación, maduración de frutos, abscisión de hojas, y la abscisión o senescencia de flores. La producción del etileno se puede inducir también por una variedad de factores externos tales como las heridas mecánicas, los estrés ambientales,​ o ciertos productos químicos, incluyendo auxinas y otros reguladores.

La biosíntesis de la hormona etileno comienza con la conversión del aminoácido metionina en S-adenosil-L-metionina (SAM, también llamada AdoMet) por la enzima S-adenosil-L-metionina sintetasa (SAM sintetasa). La SAM, entonces, se convierte en ácido 1-aminociclopropano-1-carboxílico (ACC) y en 5'-metiltioadenosina por la ácido 1-aminociclopropano-1-carboxílico sintasa (ACC sintasa). La actividad de ACC sintasa es reguladora en la producción del etileno, por lo tanto la regulación de esta enzima es crucial. La 5'-metiltioadenosina será empleada para regenerar la metionina inicial en una serie de reacciones y el ACC para formar etileno. El paso final para formar etileno requiere de oxígeno e implica la acción de la ácido 1-aminociclopropano-1-carboxílico oxidasa (ACC oxidasa), conocida antes como la enzima formadora de etileno (en inglés, ethylene forming enzyme o EFE). La biosíntesis del etileno se puede inducir por la presencia de etileno endógeno (autocatálisis) o exógeno. La síntesis del ACC aumenta con los niveles altos de las auxinas, especialmente del ácido indolacético (IAA), y de las citoquininas. La síntesis del ACC es inhibida por el ácido abscísico.

Genética del etileno

El etileno es reconocido por un complejo proteico dimérico transmembrana. El primer gen descubierto que codifica para un receptor del etileno fue reproducido en Arabidopsis thaliana. Los receptores del etileno son codificados por múltiples genes en esta especie. Las secuencias génicas para los receptores del etileno también se han identificado en muchas otras especies de plantas y una proteína receptora del etileno incluso se ha identificado en cianobacterias.

Disparadores ambientales y biológicos del etileno

Las señales ambientales pueden inducir la biosíntesis de la hormona en la planta. La inundación, la sequía, la bajada de temperaturas, las heridas y el ataque de patógenos pueden inducir la formación del etileno en la planta. En inundación, la raíz sufre carencia de oxígeno, o anoxia, que conduce a la síntesis de ácido 1-aminociclopropano-1-carboxílico (ACC). El ACC se transporta hacia la parte superior de la planta y después se oxida en las hojas. Su producto, el etileno, causa la epinastia de las hojas.

Respuestas fisiológicas de las plantas

Al igual que otras hormonas de la planta, el etileno puede tener efectos pleiotrópicos. Esto significa que tiene efectos en varios segmentos del genoma de la planta. Las respuestas al gas dependen tanto del tejido afectado como de las condiciones ambientales. En la evolución, el etileno sería simplemente un mensajero que fue adoptado para diferentes procesos sin relación entre ellos durante diversos periodos del desarrollo evolutivo.

Lista de las respuestas de la planta al etileno

Notas

  1. No todas las flores son sensibles a la presencia de etileno. Entre las muchas especies sensibles se destacan el clavel, algunos cultivares de rosa y el género Gypsophila spp.
  2. Entre los frutos cuyo comportamiento es típicamente climatérico y que responden a la presencia de etileno se sitúan las manzanas, las peras europeas y algunas variedades de peras asiáticas, los membrillos, los melocotones o duraznos y nectarinas, los albaricoques o damascos, los caquis, las ciruelas japonesas, los kiwis, las papayas, las bananas y plátanos, los falsos guayabos, los guayabos, los higos, los mangos, las paltas, el maracuyá o pasionaria, la chirimoya, el arándano, etc.

Bibliografías

  1. Neljubov D. (1901). «Uber die horizontale Nutation der Stengel von Pisum sativum und einiger anderen Pflanzen». Beih Bot Zentralbl 10: 128-139. 
  2. Doubt, Sarah L. (1917). «The Response of Plants to Illuminating Gas». Botanical Gazette 63 (3): 209-224. doi:10.1086/332006
  3. Game R. (1934 id =). «Production of ethylene by some ripening fruits». Nature 134: 1008. 
  4. Crocker, W.; Hitchcock, A. E.; Zimmerman, P. W. (1935). Similarities in the effects of ethylene and the plant auxins. Contributions from Boyce Thompson Institute 7: 231-248.
  5. Yang, S. F., and Hoffman N. E. (1984). «Ethylene biosynthesis and its regulation in higher plants». Ann. Rev. Plant Physiol. 35: 155-89. doi:10.1146/annurev.pp.35.060184.001103
  6. Buchanan, Bob; Gruissem, Wilhelm; Jones, Rusell (2000). Biochemistry and Molecular Biology of Plants (en inglés). Rockville: American Society of Plant Biologists. ISBN 0943088399. Consultado el 7 de julio de 2011. 
  7. Lin, Zhefeng; Zhong, Silin; Grierson, Don (2009). «Recent advances in ethylene research». Journal of Experimental Botany 60 (12). 
  8. Sozzi, Gabriel O. (2008, 1.ª reimpresión). «Fisiología de la maduración de los frutos de especies leñosas». En Sozzi, G. O., ed. Árboles frutales. Ecofisiología, cultivo y aprovechamiento. Buenos Aires: Facultad de Agronomía. pp. 667-687. ISBN 950-29-0974-7