En este artículo, exploraremos a fondo Medidas de tendencia central y su impacto en diferentes áreas de la vida. Desde sus orígenes hasta su presencia en la sociedad actual, Medidas de tendencia central ha desempeñado un papel fundamental en la forma en que interactuamos, trabajamos y nos relacionamos con el mundo que nos rodea. A través de un análisis detallado, examinaremos las diferentes perspectivas y opiniones respecto a Medidas de tendencia central, así como su evolución a lo largo del tiempo. Este artículo busca proporcionar una visión completa y multidimensional de Medidas de tendencia central, permitiendo a los lectores comprender mejor su importancia y trascendencia en diversos contextos.
La medida de tendencia central (moda, media y mediana), parámetro de una tendencia central o medida de centralización es un número ubicado hacia el centro de la distribución de los valores de una serie de observaciones (medidas), en la que se encuentra ubicado el conjunto de los datos. Las medidas de tendencia central más utilizadas son: media, mediana y moda. Cuando se hace referencia únicamente a la posición de estos parámetros dentro de la distribución, independientemente de que esté más o menos centrada, se habla de estas medidas como medidas de posición. En este caso se incluyen también los cuantiles entre estas medidas.
Entre las medidas de tendencia central tenemos las siguientes:
Se debe tener en cuenta que existen variables cualitativas y variables cuantitativas, por lo que las medidas de posición o medidas de tendencia se usan de acuerdo al tipo de variable que se está observando; en este caso se observan variables cuantitativas.
La media aritmética es el valor obtenido por la suma de todos sus valores dividida entre el número de sumadores.
Por ejemplo, las notas de 5 alumnos en una prueba:
Niño | Nota |
---|---|
1 | 6.0 |
2 | 5.4 |
3 | 3.1 |
4 | 7.0 |
5 | 6.1 |
La media aritmética en este ejemplo es 5.52.
La media aritmética es, probablemente, uno de los parámetros estadísticos más extendidos. Se le llama también promedio o, simplemente, media.
Dado un conjunto numérico de datos, x1, x2, ..., xn, se define su media aritmética como
Esta definición varía, aunque no sustancialmente, cuando se trata de variables continuas, esto es, también puede calcularse para variables agrupadas en intervalos.
Las principales propiedades de la media aritmética son:
Este parámetro, aun teniendo múltiples propiedades que aconsejan su uso en situaciones muy diversas, tiene también algunos inconvenientes, como son:
A veces puede ser útil otorgar pesos o valores a los datos dependiendo de su relevancia para determinado estudio. En esos casos se puede utilizar una media ponderada.
Si son nuestros datos y son sus "pesos" respectivos, la media ponderada se define de la siguiente forma:
Esencialmente, la media muestral es el mismo parámetro que el anterior, aunque el adjetivo muestral se aplica a aquellas situaciones en las que la media aritmética se calcula para un subconjunto de la población objeto de estudio.
La media muestral es un parámetro de extrema importancia en la inferencia estadística, siendo de gran utilidad para la estimación de la media poblacional, entre otros usos.
La moda es el dato más repetido de la encuesta, el valor de la variable con mayor frecuencia absoluta. En cierto sentido la definición matemática corresponde con la locución «estar de moda», esto es, ser lo que más se lleva.
Su cálculo en la moda es extremadamente sencillo, pues solo necesita un recuento. En variables continuas, expresadas en intervalos, existe el denominado intervalo modal o, en su defecto, si es necesario obtener un valor concreto de la variable, se recurre a la interpolación. Puede calcularse también para atributos, siendo en este caso la categoría más frecuente.
Por ejemplo, el número de personas en distintos vehículos en una carretera: 5-7-4-6-9-5-6-1-5-3-7. El número que más se repite es 5, entonces la moda es 5.
Hablaremos de una distribución bimodal de los datos, cuando encontremos dos modas, es decir, dos datos que tengan la misma frecuencia absoluta máxima. Cuando en una distribución de datos se encuentran tres o más modas, entonces es multimodal. Por último, si todas las variables tienen la misma frecuencia diremos que no hay moda.
Cuando tratamos con datos agrupados en intervalos, antes de calcular la moda, se ha de definir el intervalo modal. El intervalo modal es el de mayor frecuencia absoluta.
La moda, cuando los datos están agrupados, es un punto que divide el intervalo modal en dos partes de la forma p y c-p, siendo c la amplitud del intervalo, que verifiquen que:
Siendo la frecuencia absoluta del intervalo modal y y las frecuencias absolutas de los intervalos anterior y posterior, respectivamente, al intervalo modal.
Las calificaciones en la asignatura de Matemáticas de 39 alumnos de una clase viene dada por la siguiente tabla (debajo):
Calificaciones | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Número de alumnos | 2 | 2 | 4 | 5 | 8 | 9 | 3 | 4 | 2 |
Sus principales propiedades son:
La mediana es un valor de la variable que deja por debajo de sí a la mitad de los datos, una vez que éstos están ordenados de menor a mayor. Por ejemplo, la mediana del número de hijos de un conjunto de trece familias, cuyos respectivos hijos son: 3, 4, 2, 3, 2, 1, 1, 2, 1, 1, 2, 1 y 1, es 2, puesto que, una vez ordenados los datos: 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, el que ocupa la posición central es 2:
En caso de un número par de datos, la mediana no correspondería a ningún valor de la variable, por lo que se conviene en tomar como mediana el valor intermedio entre los dos valores centrales. Por ejemplo, en el caso de doce datos como los siguientes:
Se toma como mediana
Existen métodos de cálculo más rápidos para datos más numerosos (véase el artículo principal dedicado a este parámetro). Del mismo modo, para valores agrupados en intervalos, se halla el "intervalo mediano" y, dentro de éste, se obtiene un valor concreto por interpolación.
xi | fi | Fi |
---|---|---|
1 | 2 | 2 |
2 | 2 | 4 |
3 | 4 | 8 |
4 | 5 | 13 |
5 | 6 | 19 = 19 |
6 | 9 | 28 |
7 | 4 | 32 |
8 | 4 | 36 |
9 | 2 | 38 |
Primero hallamos las frecuencias absolutas acumuladas Fi (ver tabla del margen derecho).
Así, aplicando la fórmula asociada a la mediana para n impar, obtenemos X(39+1)/2 = X20 y basándonos en la fórmula que hace referencia a las frecuencias absolutas:
Por tanto la mediana será el valor de la variable que ocupe el vigésimo lugar. En nuestro ejemplo, 21 (frecuencia absoluta acumulada para Xi = 5) > 19.5 con lo que Me = 5 puntos (es aconsejable no olvidar las unidades; en este caso como estamos hablando de calificaciones, serán puntos)
La mitad de la clase ha obtenido un 5 o más, y la otra mitad un 5 o más.
Las calificaciones en la asignatura de Matemáticas de 38 alumnos de una clase viene dada por la siguiente tabla (debajo):
Calificaciones | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Número de alumnos | 2 | 2 | 4 | 5 | 6 | 9 | 4 | 4 | 2 |
Cálculo de la Mediana:
Primero hallamos las frecuencias absolutas acumuladas Fi (ver tabla margen derecho).
Si volvemos a utilizar la fórmula asociada a la mediana para n par, obtenemos X(38/2) = X19 y basándonos en la fórmula que hace referencia a las frecuencias absolutas --> Ni-1< n/2 < Ni = N18 < 19 < N19
Con lo cual la mediana será la media aritmética de los valores de la variable que ocupen el decimonoveno y el vigésimo lugar.
En nuestro ejemplo, el lugar decimonoveno lo ocupa el 5 y el vigésimo el 6, (desde el vigésimo hasta el vigésimo octavo)
con lo que Me = (5+6)/2 = 5,5 puntos.
Las principales propiedades de la mediana son:
Sus principales inconvenientes son que en el caso de datos agrupados en intervalos, su valor varía en función de la amplitud de estos. Por otra parte, no se presta a cálculos algebraicos tan bien como la media aritmética.
|urlarchivo=
requiere |url=
(ayuda) el 23 de diciembre de 2009. Consultado el 27 de abril de 2009.
|urlarchivo=
requiere |url=
(ayuda) el 23 de diciembre de 2009. Consultado el 27 de abril de 2009.