Números coprimos

Apariencia mover a la barra lateral ocultar

En matemáticas, los números coprimos (números primos entre sí o primos relativos) son aquellos números enteros a {\displaystyle a} y b {\displaystyle b} cuyo único factor en común que tienen es 1. Equivalentemente son coprimos, si, y solo si, su máximo común divisor (MCD) es igual a 1. Dos números coprimos no tienen por qué ser primos absolutos de forma individual.​. 14 y 15 son compuestos, sin embargo son coprimos, pues: mcd ⁡ ( 14 , 15 ) = 1 {\displaystyle \operatorname {mcd} (14,15)=1}

Por ejemplo, 6 y 19 son coprimos, pero 6 y 27 no lo son porque ambos son divisibles por 3. El 1 es coprimo respecto de todos los enteros, mientras que 0 solo lo es respecto de 1 y -1.

Un cálculo rápido para determinar si dos números enteros son coprimos es el algoritmo de Euclides.

Propiedades

Básicas

Otras propiedades

Figura 1. Los números 4 y 9 son coprimos. Por tanto, la diagonal del retículo 4 x 9 no interseca con ninguno de los otros puntos del retículo. gcd ( n a − 1 , n b − 1 ) = n gcd ( a , b ) − 1. {\displaystyle \gcd(n^{a}-1,n^{b}-1)=n^{\gcd(a,b)}-1.}

Proposición

Todo divisor de la suma de dos cuadrados coprimos es igual a la suma de dos cuadrados.

Ejemplo 41 divide a 1681 = 92+402, (1600 y 81 son coprimos) luego 41 = 52+42, suma de cuadrados.

Generalización

Dos ideales I y J en un anillo conmutativo A son coprimos si I + J = A. Esto generaliza la identidad de Bézout. Si I y J son primos entre sí, entonces IJ = I∩J; además, si K es un tercer ideal tal que I contiene a JK, entonces I contiene a K.

Con esta definición, dos ideales principales (a) y (b) en el anillo de los números enteros Z son primos entre sí, si y solo si, a y b son primos entre sí.

Véase también

Notas y referencias

  1. Eaton, 1872, p. 49.
  2. Hardy, 2008, p. 6.
  3. a b Weisstein, Eric W. «Relatively Prime». En Wolfram Research, Inc., ed. MathWorld (en inglés). Consultado el 3 de enero de 2017. 
  4. LeVeque, 1996, p. 32.
  5. Por la división euclídea se tiene 15 =14×1+1 → MCD =1
  6. Stark, 1978, p. 21.
  7. Mencionado como un teorema de Euler por Ózhigova: ¿Qué es la teoría de números? Editorial URSS, Moscú 204, pp 28 y 29

Bibliografía

Bibliografía adicional

Enlaces externos