En el presente artículo se abordará el tema de Anexo:Poliedros uniformes, el cual ha generado gran interés y controversia en los últimos tiempos. Desde su surgimiento, Anexo:Poliedros uniformes ha capturado la atención de especialistas, académicos y público en general debido a su relevancia e impacto en diversos aspectos de la sociedad moderna. A lo largo de estas páginas, se explorarán diferentes enfoques y perspectivas sobre Anexo:Poliedros uniformes, así como su influencia en campos tan variados como la tecnología, la política, la cultura y la economía. La intención es ofrecer una visión integral y actualizada del tema, con el fin de enriquecer el debate y promover una comprensión más profunda de Anexo:Poliedros uniformes y su significado en la actualidad.
![]() |
![]() |
En geometría, un poliedro uniforme es un poliedro que tiene polígonos regulares como caras y es una figura isogonal (es decir, que es transitiva respecto a sus vértices, de forma que existe una isometría que permite aplicar un vértice cualquiera sobre cualquier otro). De ello se deduce que todos los vértices son congruentes y el poliedro tiene un alto grado de simetría rotacional y especular.
Los poliedros uniformes se pueden dividir entre formas convexas con caras formadas por polígonos regurales convexos y aquellos cuyas caras tienen forma de estrella. Los poliedros estrellados tienen caras con forma de estrella o figras de vértice regulares o ambos tipos de elementos.
El listado incluye los siguientes poliedros:
Se comprobó en Sopov (1970) que solo existen 75 poliedros uniformes además de las infinitas familias de prismas y antiprismas. John Skilling descubrió un ejemplo degenerado pasado por alto, al relajar la condición de que solo dos caras pueden encontrarse solamente en una arista. Este es un poliedro uniforme degenerado en lugar de un poliedro uniforme, porque algunos pares de aristas coinciden.
No se incluyen:
Son de uso común cuatro esquemas de numeración para los poliedros uniformes, que se distinguen por letras:
Hay nombres geométricos genéricos para los poliedros más comunes. Por ejemplo, los cinco sólidos platónicos se denominan tetraedro, hexaedro, octaedro, dodecaedro e icosaedro, con 4, 6, 8, 12 y 20 lados respectivamente.
Las formas convexas se enumeran en orden de grado de configuración de vértices desde 3 caras/vértice en adelante, y en lados crecientes por cara. Este ordenamiento permite mostrar similitudes topológicas.
Nombre | Imagen | Tipo de Vértices |
Símbolo Wythoff |
Simetría | C# | W# | U# | K# | Vértices | Aristas | Caras | Tipo de caras |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tetraedro | ![]() |
![]() 3.3.3 |
3 | 2 3 | Td | C15 | W001 | U01 | K06 | 4 | 6 | 4 | 4{3} |
Prisma triangular | ![]() |
![]() 3.4.4 |
2 3 | 2 | D3h | C33a | — | U76a | K01a | 6 | 9 | 5 | 2{3} +3{4} |
Tetraedro truncado | ![]() |
![]() 3.6.6 |
2 3 | 3 | Td | C16 | W006 | U02 | K07 | 12 | 18 | 8 | 4{3} +4{6} |
Cubo truncado | ![]() |
![]() 3.8.8 |
2 3 | 4 | Oh | C21 | W008 | U09 | K14 | 24 | 36 | 14 | 8{3} +6{8} |
Dodecaedro truncado | ![]() |
![]() 3.10.10 |
2 3 | 5 | Ih | C29 | W010 | U26 | K31 | 60 | 90 | 32 | 20{3} +12{10} |
Cubo | ![]() |
![]() 4.4.4 |
3 | 2 4 | Oh | C18 | W003 | U06 | K11 | 8 | 12 | 6 | 6{4} |
Prisma pentagonal | ![]() |
![]() 4.4.5 |
2 5 | 2 | D5h | C33b | — | U76b | K01b | 10 | 15 | 7 | 5{4} +2{5} |
Prisma hexagonal | ![]() |
![]() 4.4.6 |
2 6 | 2 | D6h | C33c | — | U76c | K01c | 12 | 18 | 8 | 6{4} +2{6} |
Prisma octogonal | ![]() |
![]() 4.4.8 |
2 8 | 2 | D8h | C33e | — | U76e | K01e | 16 | 24 | 10 | 8{4} +2{8} |
Prisma decagonal | ![]() |
![]() 4.4.10 |
2 10 | 2 | D10h | C33g | — | U76g | K01g | 20 | 30 | 12 | 10{4} +2{10} |
Prisma dodecagonal | ![]() |
![]() 4.4.12 |
2 12 | 2 | D12h | C33i | — | U76i | K01i | 24 | 36 | 14 | 12{4} +2{12} |
Octaedro truncado | ![]() |
![]() 4.6.6 |
2 4 | 3 | Oh | C20 | W007 | U08 | K13 | 24 | 36 | 14 | 6{4} +8{6} |
Cuboctaedro truncado | ![]() |
![]() 4.6.8 |
2 3 4 | | Oh | C23 | W015 | U11 | K16 | 48 | 72 | 26 | 12{4} +8{6} +6{8} |
Icosidodecaedro truncado | ![]() |
![]() 4.6.10 |
2 3 5 | | Ih | C31 | W016 | U28 | K33 | 120 | 180 | 62 | 30{4} +20{6} +12{10} |
Dodecaedro | ![]() |
![]() 5.5.5 |
3 | 2 5 | Ih | C26 | W005 | U23 | K28 | 20 | 30 | 12 | 12{5} |
Icosaedro truncado | ![]() |
![]() 5.6.6 |
2 5 | 3 | Ih | C27 | W009 | U25 | K30 | 60 | 90 | 32 | 12{5} +20{6} |
Octaedro | ![]() |
![]() 3.3.3.3 |
4 | 2 3 | Oh | C17 | W002 | U05 | K10 | 6 | 12 | 8 | 8{3} |
Antiprisma cuadrado | ![]() |
![]() 3.3.3.4 |
| 2 2 4 | D4d | C34a | — | U77a | K02a | 8 | 16 | 10 | 8{3} +2{4} |
Antiprisma pentagonal | ![]() |
![]() 3.3.3.5 |
| 2 2 5 | D5d | C34b | — | U77b | K02b | 10 | 20 | 12 | 10{3} +2{5} |
Antiprisma hexagonal | ![]() |
![]() 3.3.3.6 |
| 2 2 6 | D6d | C34c | — | U77c | K02c | 12 | 24 | 14 | 12{3} +2{6} |
Antiprisma octogonal | ![]() |
![]() 3.3.3.8 |
| 2 2 8 | D8d | C34e | — | U77e | K02e | 16 | 32 | 18 | 16{3} +2{8} |
Antiprisma decagonal | ![]() |
![]() 3.3.3.10 |
| 2 2 10 | D10d | C34g | — | U77g | K02g | 20 | 40 | 22 | 20{3} +2{10} |
Antiprisma dodecagonal | ![]() |
![]() 3.3.3.12 |
| 2 2 12 | D12d | C34i | — | U77i | K02i | 24 | 48 | 26 | 24{3} +2{12} |
Cuboctaedro | ![]() |
![]() 3.4.3.4 |
2 | 3 4 | Oh | C19 | W011 | U07 | K12 | 12 | 24 | 14 | 8{3} +6{4} |
Rombicuboctaedro | ![]() |
![]() 3.4.4.4 |
3 4 | 2 | Oh | C22 | W013 | U10 | K15 | 24 | 48 | 26 | 8{3} +(6+12){4} |
Rombicosidodecaedro | ![]() |
![]() 3.4.5.4 |
3 5 | 2 | Ih | C30 | W014 | U27 | K32 | 60 | 120 | 62 | 20{3} +30{4} +12{5} |
Icosidodecaedro | ![]() |
![]() 3.5.3.5 |
2 | 3 5 | Ih | C28 | W012 | U24 | K29 | 30 | 60 | 32 | 20{3} +12{5} |
Icosaedro | ![]() |
![]() 3.3.3.3.3 |
5 | 2 3 | Ih | C25 | W004 | U22 | K27 | 12 | 30 | 20 | 20{3} |
Cubo romo | ![]() |
![]() 3.3.3.3.4 |
| 2 3 4 | O | C24 | W017 | U12 | K17 | 24 | 60 | 38 | (8+24){3} +6{4} |
Dodecaedro romo | ![]() |
![]() 3.3.3.3.5 |
| 2 3 5 | I | C32 | W018 | U29 | K34 | 60 | 150 | 92 | (20+60){3} +12{5} |
Las formas que contienen solo caras convexas se enumeran en primer lugar, seguidas de las figuras con caras en forma de estrella.
Los poliedros uniformes | 52 3 3, | 52 32 32, | 53 52 3, | 32 53 3 52 y | (32) 53 (3) 52 tienen algunas caras que forman pares coplanarios. (Coxeter et al. 1954, págs. 423, 425, 426; Skilling 1975, pág. 123)
Nombre | Imagen | Símbolo Wythoff |
Figura vértices |
Simetría | C# | W# | U# | K# | Vért. | Aristas | Caras | Chi | ¿Orien- table? |
Dens. | Tipo caras |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Octahemioctaedro | ![]() |
32 3 | 3 | ![]() 6.32.6.3 |
Oh | C37 | W068 | U03 | K08 | 12 | 24 | 12 | 0 | Sí | 8{3}+4{6} | |
Tetrahemihexaedro | ![]() |
32 3 | 2 | ![]() 4.32.4.3 |
Td | C36 | W067 | U04 | K09 | 6 | 12 | 7 | 1 | No | 4{3}+3{4} | |
Cubohemioctaedro | ![]() |
43 4 | 3 | ![]() 6.43.6.4 |
Oh | C51 | W078 | U15 | K20 | 12 | 24 | 10 | −2 | No | 6{4}+4{6} | |
Gran dodecaedro |
![]() |
52 | 2 5 | ![]() (5.5.5.5.5)/2 |
Ih | C44 | W021 | U35 | K40 | 12 | 30 | 12 | −6 | Sí | 3 | 12{5} |
Gran icosaedro |
![]() |
52 | 2 3 | ![]() (3.3.3.3.3)/2 |
Ih | C69 | W041 | U53 | K58 | 12 | 30 | 20 | 2 | Sí | 7 | 20{3} |
Gran icosidodecaedro ditrigonal |
![]() |
32 | 3 5 | ![]() (5.3.5.3.5.3)/2 |
Ih | C61 | W087 | U47 | K52 | 20 | 60 | 32 | −8 | Sí | 6 | 20{3}+12{5} |
Pequeño rombihexaedro |
![]() |
2 4 (32 42) | | ![]() 4.8.43.87 |
Oh | C60 | W086 | U18 | K23 | 24 | 48 | 18 | −6 | No | 12{4}+6{8} | |
Pequeño cubicuboctaedro |
![]() |
32 4 | 4 | ![]() 8.32.8.4 |
Oh | C38 | W069 | U13 | K18 | 24 | 48 | 20 | −4 | Sí | 2 | 8{3}+6{4}+6{8} |
Gran rombicuboctaedro |
![]() |
32 4 | 2 | ![]() 4.32.4.4 |
Oh | C59 | W085 | U17 | K22 | 24 | 48 | 26 | 2 | Sí | 5 | 8{3}+(6+12){4} |
Pequeño dodecahemi- dodecaedro |
![]() |
54 5 | 5 | ![]() 10.54.10.5 |
Ih | C65 | W091 | U51 | K56 | 30 | 60 | 18 | −12 | No | 12{5}+6{10} | |
Gran dodecahemi- cosaedro |
![]() |
54 5 | 3 | ![]() 6.54.6.5 |
Ih | C81 | W102 | U65 | K70 | 30 | 60 | 22 | −8 | No | 12{5}+10{6} | |
Pequeño icosihemi- dodecaedro |
![]() |
32 3 | 5 | ![]() 10.32.10.3 |
Ih | C63 | W089 | U49 | K54 | 30 | 60 | 26 | −4 | No | 20{3}+6{10} | |
Pequeño dodecicosaedro |
![]() |
3 5 (32 54) | | ![]() 10.6.109.65 |
Ih | C64 | W090 | U50 | K55 | 60 | 120 | 32 | −28 | No | 20{6}+12{10} | |
Pequeño rombidodecaedro |
![]() |
2 5 (32 52) | | ![]() 10.4.109.43 |
Ih | C46 | W074 | U39 | K44 | 60 | 120 | 42 | −18 | No | 30{4}+12{10} | |
Pequeño dodecicosi- dodecaedro |
![]() |
32 5 | 5 | ![]() 10.32.10.5 |
Ih | C42 | W072 | U33 | K38 | 60 | 120 | 44 | −16 | Sí | 2 | 20{3}+12{5}+12{10} |
Rombicosaedro | ![]() |
2 3 (54 52) | | ![]() 6.4.65.43 |
Ih | C72 | W096 | U56 | K61 | 60 | 120 | 50 | −10 | No | 30{4}+20{6} | |
Gran icosicosi- dodecaedro |
![]() |
32 5 | 3 | ![]() 6.32.6.5 |
Ih | C62 | W088 | U48 | K53 | 60 | 120 | 52 | −8 | Sí | 6 | 20{3}+12{5}+20{6} |
Prisma pentagrámico |
![]() |
2 52 | 2 | ![]() 52.4.4 |
D5h | C33b | — | U78a | K03a | 10 | 15 | 7 | 2 | Sí | 2 | 5{4}+2{52} |
Prisma heptagrámico (7/2) |
![]() |
2 72 | 2 | ![]() 72.4.4 |
D7h | C33d | — | U78b | K03b | 14 | 21 | 9 | 2 | Sí | 2 | 7{4}+2{72} |
Prisma heptagrámico (7/3) |
![]() |
2 73 | 2 | ![]() 73.4.4 |
D7h | C33d | — | U78c | K03c | 14 | 21 | 9 | 2 | Sí | 3 | 7{4}+2{73} |
Prisma octagrámico |
![]() |
2 83 | 2 | ![]() 83.4.4 |
D8h | C33e | — | U78d | K03d | 16 | 24 | 10 | 2 | Sí | 3 | 8{4}+2{83} |
Antiprisma pentagrámico | ![]() |
| 2 2 52 | ![]() 52.3.3.3 |
D5h | C34b | — | U79a | K04a | 10 | 20 | 12 | 2 | Sí | 2 | 10{3}+2{52} |
Antiprisma pentagrámico cruzado |
![]() |
| 2 2 53 | ![]() 53.3.3.3 |
D5d | C35a | — | U80a | K05a | 10 | 20 | 12 | 2 | Sí | 3 | 10{3}+2{52} |
Antiprisma heptagrámico (7/2) |
![]() |
| 2 2 72 | ![]() 72.3.3.3 |
D7h | C34d | — | U79b | K04b | 14 | 28 | 16 | 2 | Sí | 3 | 14{3}+2{72} |
Antiprisma heptagrámico (7/3) |
![]() |
| 2 2 73 | ![]() 73.3.3.3 |
D7d | C34d | — | U79c | K04c | 14 | 28 | 16 | 2 | Sí | 3 | 14{3}+2{73} |
Antiprisma heptagrámico cruzado |
![]() |
| 2 2 74 | ![]() 74.3.3.3 |
D7h | C35b | — | U80b | K05b | 14 | 28 | 16 | 2 | Sí | 4 | 14{3}+2{73} |
Antiprisma octagrámico |
![]() |
| 2 2 83 | ![]() 83.3.3.3 |
D8d | C34e | — | U79d | K04d | 16 | 32 | 18 | 2 | Sí | 3 | 16{3}+2{83} |
Antiprisma octagrámico cruzado |
![]() |
| 2 2 85 | ![]() 85.3.3.3 |
D8d | C35c | — | U80c | K05c | 16 | 32 | 18 | 2 | Sí | 5 | 16{3}+2{83} |
Pequeño dodecaedro estrellado |
![]() |
5 | 2 52 | ![]() (52)5 |
Ih | C43 | W020 | U34 | K39 | 12 | 30 | 12 | −6 | Sí | 3 | 12{52} |
Gran dodecaedro estrellado |
![]() |
3 | 2 52 | ![]() (52)3 |
Ih | C68 | W022 | U52 | K57 | 20 | 30 | 12 | 2 | Sí | 7 | 12{52} |
Dodeca- dodecaedro ditrigonal |
![]() |
3 | 53 5 | ![]() (53.5)3 |
Ih | C53 | W080 | U41 | K46 | 20 | 60 | 24 | −16 | Sí | 4 | 12{5}+12{52} |
Pequeño icosidodecaedro ditrigonal |
![]() |
3 | 52 3 | ![]() (52.3)3 |
Ih | C39 | W070 | U30 | K35 | 20 | 60 | 32 | −8 | Sí | 2 | 20{3}+12{52} |
Hexaedro truncado estrellado |
![]() |
2 3 | 43 | ![]() 83.83.3 |
Oh | C66 | W092 | U19 | K24 | 24 | 36 | 14 | 2 | Sí | 7 | 8{3}+6{83} |
Gran rombihexaedro |
![]() |
2 43 (32 42) | | ![]() 4.83.43.85 |
Oh | C82 | W103 | U21 | K26 | 24 | 48 | 18 | −6 | No | 12{4}+6{83} | |
Gran cubicuboctaedro |
![]() |
3 4 | 43 | ![]() 83.3.83.4 |
Oh | C50 | W077 | U14 | K19 | 24 | 48 | 20 | −4 | Sí | 4 | 8{3}+6{4}+6{83} |
Gran dodecahemi- dodecaedro |
![]() |
53 52 | 53 | ![]() 103.53.103.52 |
Ih | C86 | W107 | U70 | K75 | 30 | 60 | 18 | −12 | No | 12{52}+6{103} | |
Pequeño dodecahemi- cosaedro |
![]() |
53 52 | 3 | ![]() 6.53.6.52 |
Ih | C78 | W100 | U62 | K67 | 30 | 60 | 22 | −8 | No | 12{52}+10{6} | |
Dodeca- dodecaedro |
![]() |
2 | 5 52 | ![]() (52.5)2 |
Ih | C45 | W073 | U36 | K41 | 30 | 60 | 24 | −6 | Sí | 3 | 12{5}+12{52} |
Gran icosihemi- dodecaedro |
![]() |
32 3 | 53 | ![]() 103.32.103.3 |
Ih | C85 | W106 | U71 | K76 | 30 | 60 | 26 | −4 | No | 20{3}+6{103} | |
Gran icosidodecaedro |
![]() |
2 | 3 52 | ![]() (52.3)2 |
Ih | C70 | W094 | U54 | K59 | 30 | 60 | 32 | 2 | Sí | 7 | 20{3}+12{52} |
Cuboctaedro cubitruncado |
![]() |
43 3 4 | | ![]() 83.6.8 |
Oh | C52 | W079 | U16 | K21 | 48 | 72 | 20 | −4 | Sí | 4 | 8{6}+6{8}+6{83} |
Gran cuboctaedro truncado |
![]() |
43 2 3 | | ![]() 83.4.65 |
Oh | C67 | W093 | U20 | K25 | 48 | 72 | 26 | 2 | Sí | 1 | 12{4}+8{6}+6{83} |
Gran dodecaedro truncado |
![]() |
2 52 | 5 | ![]() 10.10.52 |
Ih | C47 | W075 | U37 | K42 | 60 | 90 | 24 | −6 | Sí | 3 | 12{52}+12{10} |
Pequeño dodecaedro truncado estrellado |
![]() |
2 5 | 53 | ![]() 103.103.5 |
Ih | C74 | W097 | U58 | K63 | 60 | 90 | 24 | −6 | Sí | 9 | 12{5}+12{103} |
Gran dodecaedro truncado estrellado |
![]() |
2 3 | 53 | ![]() 103.103.3 |
Ih | C83 | W104 | U66 | K71 | 60 | 90 | 32 | 2 | Sí | 13 | 20{3}+12{103} |
Gran icosaedro truncado |
![]() |
2 52 | 3 | ![]() 6.6.52 |
Ih | C71 | W095 | U55 | K60 | 60 | 90 | 32 | 2 | Sí | 7 | 12{52}+20{6} |
Gran dodecicosaedro |
![]() |
3 53(32 52) | | ![]() 6.103.65.107 |
Ih | C79 | W101 | U63 | K68 | 60 | 120 | 32 | −28 | No | 20{6}+12{103} | |
Gran rombidodecaedro |
![]() |
2 53 (32 54) | | ![]() 4.103.43.107 |
Ih | C89 | W109 | U73 | K78 | 60 | 120 | 42 | −18 | No | 30{4}+12{103} | |
Icosidodeca- dodecaedro |
![]() |
53 5 | 3 | ![]() 6.53.6.5 |
Ih | C56 | W083 | U44 | K49 | 60 | 120 | 44 | −16 | Sí | 4 | 12{5}+12{52}+20{6} |
Pequeño dodecicosi- dodecaedro ditrigonal |
![]() |
53 3 | 5 | ![]() 10.53.10.3 |
Ih | C55 | W082 | U43 | K48 | 60 | 120 | 44 | −16 | Sí | 4 | 20{3}+12{52}+12{10} |
Gran dodecicosi- dodecaedro ditrigonal |
![]() |
3 5 | 53 | ![]() 103.3.103.5 |
Ih | C54 | W081 | U42 | K47 | 60 | 120 | 44 | −16 | Sí | 4 | 20{3}+12{5}+12{103} |
Gran dodecicosi- dodecaedro |
![]() |
52 3 | 53 | ![]() 103.52.103.3 |
Ih | C77 | W099 | U61 | K66 | 60 | 120 | 44 | −16 | Sí | 10 | 20{3}+12{52}+12{103} |
Pequeño icosicosi- dodecaedro |
![]() |
52 3 | 3 | ![]() 6.52.6.3 |
Ih | C40 | W071 | U31 | K36 | 60 | 120 | 52 | −8 | Sí | 2 | 20{3}+12{52}+20{6} |
Rombidodeca- dodecaedro |
![]() |
52 5 | 2 | ![]() 4.52.4.5 |
Ih | C48 | W076 | U38 | K43 | 60 | 120 | 54 | −6 | Sí | 3 | 30{4}+12{5}+12{52} |
Gran rombicosi- dodecaedro |
![]() |
53 3 | 2 | ![]() 4.53.4.3 |
Ih | C84 | W105 | U67 | K72 | 60 | 120 | 62 | 2 | Sí | 13 | 20{3}+30{4}+12{52} |
Dodeca- dodecaedro icositruncado |
![]() |
3 5 53 | | ![]() 103.6.10 |
Ih | C57 | W084 | U45 | K50 | 120 | 180 | 44 | −16 | Sí | 4 | 20{6}+12{10}+12{103} |
Dodeca- dodecaedro truncado |
![]() |
2 5 53 | | ![]() 103.4.109 |
Ih | C75 | W098 | U59 | K64 | 120 | 180 | 54 | −6 | Sí | 3 | 30{4}+12{10}+12{103} |
Gran icosidodecaedro truncado |
![]() |
2 3 53 | | ![]() 103.4.6 |
Ih | C87 | W108 | U68 | K73 | 120 | 180 | 62 | 2 | Sí | 13 | 30{4}+20{6}+12{103} |
Dodeca- dodecaedro romo |
![]() |
| 2 52 5 | ![]() 3.3.52.3.5 |
I | C49 | W111 | U40 | K45 | 60 | 150 | 84 | −6 | Sí | 3 | 60{3}+12{5}+12{52} |
Dodeca- dodecaedro romo invertido |
![]() |
| 53 2 5 | ![]() 3.53.3.3.5 |
I | C76 | W114 | U60 | K65 | 60 | 150 | 84 | −6 | Sí | 9 | 60{3}+12{5}+12{52} |
Gran icosidodecaedro romo |
![]() |
| 2 52 3 | ![]() 34.52 |
I | C73 | W113 | U57 | K62 | 60 | 150 | 92 | 2 | Sí | 7 | (20+60){3}+12{52} |
Gran icosidodecaedro romo invertido |
![]() |
| 53 2 3 | ![]() 34.53 |
I | C88 | W116 | U69 | K74 | 60 | 150 | 92 | 2 | Sí | 13 | (20+60){3}+12{52} |
Gran icosidodecaedro retrorromo |
![]() |
| 2 32 53 | ![]() (34.52)/2 |
I | C90 | W117 | U74 | K79 | 60 | 150 | 92 | 2 | Sí | 37 | (20+60){3}+12{52} |
Gran dodecicosi- dodecaedro romo |
![]() |
| 53 52 3 | ![]() 33.53.3.52 |
I | C80 | W115 | U64 | K69 | 60 | 180 | 104 | −16 | Sí | 10 | (20+60){3}+(12+12){52} |
Icosidodeca- dodecaedro romo |
![]() |
| 53 3 5 | ![]() 33.5.3.53 |
I | C58 | W112 | U46 | K51 | 60 | 180 | 104 | −16 | Sí | 4 | (20+60){3}+12{5}+12{52} |
Pequeño icosicosi- dodecaedro romo |
![]() |
| 52 3 3 | ![]() 35.52 |
Ih | C41 | W110 | U32 | K37 | 60 | 180 | 112 | −8 | Sí | 2 | (40+60){3}+12{52} |
Pequeño icosicosi- dodecaedro retrorromo |
![]() |
| 32 32 52 | ![]() (35.52)/2 |
Ih | C91 | W118 | U72 | K77 | 60 | 180 | 112 | −8 | Sí | 38 | (40+60){3}+12{52} |
Gran dirrombicosi- dodecaedro |
![]() |
| 32 53 3 52 | ![]() (4.53.4.3. 4.52.4.32)/2 |
Ih | C92 | W119 | U75 | K80 | 60 | 240 | 124 | −56 | No | 40{3}+60{4}+24{52} |
Nombre | Imagen | Símbolo Wythoff |
Figura vértices |
Simetría | C# | W# | U# | K# | Vért. | Aristas | Caras | Chi | ¿Orien- table? |
Dens. | Tipo caras |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gran dirrombi- dodecaedro |
![]() |
| (32) 53 (3) 52 | ![]() (52.4.3.3.3.4. 53. 4.32.32.32.4)/3 |
Ih | — | — | — | — | 60 | 360 (*) | 204 | −96 | No | 120{3}+60{4}+24{52} |
El gran dirrombidodecaedro birromo tiene 240 de sus 360 aristas coincidiendo en el espacio en 120 pares. Debido a esta degeneración de aristas, no siempre se considera un poliedro uniforme.